IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 3081-3097

Thermal conduction of a circular inclusion with variable
interface parameter

Tungyang Chen *

Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
Received 14 February 2000; in revised form 25 April 2000

Abstract

An imperfect bonding problem associated with a solitary circular inclusion embedded in an infinite matrix under a
remotely applied uniform intensity is considered. Specifically, we study the effect of imperfect interfaces which are either
of weakly or of highly conducting type and that the interface parameter could vary arbitrarily along the interface. By
using the orthogonality properties of the trigonometric series, we show that the solution field is governed by a linear set
of algebraic equations with an infinite number of unknowns. The governing matrix for the unknowns is primarily
composed of elements which are simple combinations of the Fourier coefficients of the interface parameter. Solutions of
the boundary-value problem are employed to estimate the effective conductivity tensor of a composite consisting of
dispersions of circular inclusions with equal size. The effective properties solely depend on two particular constants
among an infinite number of unknowns. It is demonstrated that, even for a composite with isotropic dispersions of
inclusions, the composite may become effectively anisotropic due to the presence of a variable interface parameter.
Further, we present two microstructure independent properties regarding the effective conductivity of the considered
system. We first show that the effective conductivity tensor for a composite with variably imperfect interfaces is always
diagonally symmetric. This is accomplished by means of a reciprocal relation that is established in such systems. Next,
we present dual relations for the effective conductivities of two-dimensional composites with variably imperfect
interfaces. The latter result is a direct consequence of the existence of a dual relation for the local fields in such
composites, as pointed out by Benveniste and Miloh (Benveniste, Y., Miloh, T., 1999. J. Mech. Phys. Solids 47, 1873—
1892). © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This work is concerned with the thermal conduction of a composite with imperfect interfaces. The
content of this work can be divided into three parts: (1) to resolve the field quantities of the boundary-value
problem associated with a circular inclusion imperfectly embedded in an infinite matrix with arbitrarily
varying interface parameter, (2) to assess the macroscopic behavior of the composite incorporating the effect
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of a variable interface parameter and (3) to present two microstructure independent properties of com-
posites with variable interface parameter.

There are two types of imperfect interfaces in the context of thermal conduction, which can be modeled
as a thin interface layer consisting of either weakly conducting or highly conducting phase. At weakly
conducting interphase, the temperature potential jumps across the interface. The associated normal com-
ponent of the heat flux is continuous and is proportional to the jump in temperature potential (Sanchez-
Palencia, 1970). The effect of the interface of this kind has been investigated by a number of researchers (see
for example, Benveniste and Miloh (1986), Cheng and Torquato (1997) and the references cited therein).
On the other hand, at highly conducting interfaces, the temperature is continuous across the interface,
whereas the normal component of the heat flux has a discontinuity which is proportional to a certain
differential expression of the temperature (Pham Huy and Sanchez-Palencia, 1974). Studies of the effect of
the interface of this kind appear to be relatively recent (Miloh and Benveniste, 1999). The proportional
constant of imperfect interfaces, f5(6) or a(6), is referred to as an interface parameter that may not be
spatially uniform along the interface.

In this work, we examine the solution of a boundary-value problem associated with a circular inclusion
embedded in an infinite matrix under a remotely applied uniform intensity along a certain direction. We
examine the effect of imperfect interface in which the interface could be either of weakly or of highly
conducting type and that the interface parameter could vary arbitrarily along the interface. By using the
orthogonality properties of the trigonometric series, we show that the solution is governed by a linear set of
algebraic equations. The system can be constructed upto any desired order N, and the solutions are resolved
by an appropriate truncation. The elements of the governing matrix are explicitly expressed, which are only
simple combinations of the Fourier coefficients of the interface parameter together with the phase prop-
erties. For an interface parameter that is capable of being expressed by a finite cosine series, the governing
matrix becomes a banded one. A principal feature of the present formulation is that the solution procedure
is straightforward and mathematically simple. For a different variation of f§ or o, no further derivation is
needed and the governing system for the solutions remains unchanged simply by changing the new set of
Fourier coefficients of « or f.

In the literature, various aspects of the effects of imperfect interfaces have been examined, including
micromechanical estimates of the effective properties, variational bounds, exact connections of micro-
structure independent relationships, etc. To the author’s knowledge, except the recent work by Ru and
Schiavone (1997), ' most of the studies on imperfect bonding problems exclusively dealt with constant
interface parameter. Particularly, Ru and Schiavone examined a circular inclusion in an infinite medium
under an antiplane shear, which is mathematically equivalent to the present one. However, only weakly
conducting type of interface (in the terminology of conduction) is examined in their work. They employed a
complex variable approach together with the analytic continuation method to analyze the solutions. In
contrast to the present formulation, their derivations are mathematically cumbersome. Particularly, it may
present some mathematical difficulties for a complicated function of $(6) or a(6). Our solution is simple and
explicit which is basically governed by a linear set of algebraic equations.

The obtained results are employed to estimate the effective conductivities of a composite consisting of
circular cylinders of equal size under the dilute approximation and the Mori-Tanaka (1973) mean field
approximation. It is seen that even for an isotropic arrangement of the circular inclusions, the effective
conductivity tensor of the medium may become macroscopically anisotropic due to the effect of a variable
interface parameter.

Lastly, we present two microstructure independent properties regarding the composite system with
variable interface parameters. The first one is on the diagonal symmetry of the effective conductivity tensor.

! The Author would like to thank Y. Benveniste for bringing the paper to his attention during the writing stage.
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The fact that the effective conductivity tensor in composites with perfect interfaces is diagonally symmetric
is well known. One may wonder whether this property prevails in the case of variably imperfect interfaces as
well. The answer is yes. The proof is achieved by extending first the well-known reciprocal theorem to the
case of imperfect interfaces. The second result is on a dual relation between the effective conductivity tensor
of composites with variable interface parameters. The duality relations have their origins in the works of
Keller (1964), Dykhne (1971) and Mendelson (1975). Later developments in the same setting and in more
general heterogeneous media have been derived by many researchers (Helsing et al., 1997; Milton, 1997).
Recently, Benveniste and Miloh (1999) showed that the dual relation exists between the local fields of a
composite system with variable interface parameter. Benveniste (1999) also pointed out that the duality
principle can in fact be applied to anisotropic constituents. In Proposition 2, we present the dual relation on
the effective conductivity tensor for such systems. This result is certainly anticipated from the works of
Benveniste (1999) and Benveniste and Miloh (1999); nevertheless, they have not been explicitly stated
before.

The outline of the paper is as follows: A description of the interface conditions in both kinds of interfaces
is given in Section 2. Section 3 resolves the considered boundary-value problems with imperfect interface of
both types. Some particular examples of variations of «(f) and () are presented in Section 4. Section 5
examines the effect of imperfect interface on the effective conductivity of composites. Section 6 presents two
microstructure independent properties of the considered system. We finally mention that the mathematical
frameworks of heat conduction, electric conduction, dielectric behavior, magnetic permeability and anti-
plane deformation in cylindrical aggregates are entirely equivalent. Any results obtained in one area can be
readily applied to the other domains.

2. Preliminary

We consider a two-phase medium in which the conductivity of each phase is denoted by k;, where
i = 1,2. Each of the phases occupies region V;, i = 1,2, that are separated by the interface I'. Let T be the
temperature field, the intensity H; and heat flux g; are, respectively, given by H; = —VT, ¢; = kH;. Under
steady state conditions, the heat flux is divergenceless and thus in ¥V (= 7] + F5) obeys

VT=0 inV. (1)

For a weakly conducting interface, the normal component of the heat flux is continuous, whereas the
temperature field undergoes a discontinuity which is proportional to the normal component of the heat
flux:

k1—=kz—n=ﬂ(T1—Tz) : 2)

Here, 0/0n is the normal derivative on I' from phase 2 to phase 1 and f(0) ( = 0), referred to as the in-
terface parameter in the sequel, is defined by

B =limk./t, 3)

ke—0

where k. and ¢ denote respectively the interphase conductivity and its thickness and is always not less than
zero. In particular, the scalar parameter § could vary along the interface I'. Eq. (2) indicates that there
exists a thermal resistance at the interface between two phases. In the case where the interface is perfectly
bonded, the interface parameter f — oo, whereas § = 0 stands for adiabatic contact.
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For a highly conducting interface, the temperature field is continuous, whereas the normal component of
the heat flux undergoes a discontinuity:

or: oT
Tl = Tz|1—7 kza—rlz—kla—’ll:OCAST+VsT'vSOC . (4a,b)
r

Here, «(0) ( > 0) is the scalar interface parameter defined as

o = lim ke, (5)

ke—0

where 4 is the operator of surface Laplacian and V is the operator of surface gradient (Van Bladel, 1964).
These operators can be written in terms of two orthogonal parametric curvilinear coordinates (uy,u,) that
describe the interface

1 0 (hy, O 0 (h 0O 0 0
g= | S (RO O (B g O (©)
h1h2 6u1 h1 6u1 6u2 hz 6u2 hl 6u1 hz auz
where 4; is the metric coefficient and u; denotes the unit vector of these curvilinear coordinates. For a
circular boundary, it follows simply that
B Uy 0 N 1 62

s — 7 @5 s — }”_2 @a (7)
in a cylindrical coordinate (7, 0,z).

It is seen that if the interface parameter « is a constant, Eq. (4a,b) will take a simpler form since the
second term on the right-hand side of Eq. (4a,b) vanishes. In the case where the interface is perfectly
bonded, the interface parameter o — 0, whereas a value of o — oo describes contact with a medium of
infinite conductivity.

3. A circular inclusion in an infinite matrix

We consider the boundary-value problem of a circular cylinder of radius a (with conductivity 4,) in an
unbounded matrix of conductivity k; subjected to a uniform intensity field H; at the remote boundary:

T(6,y)|, e = —Hixi. (8)

3.1. Weakly conducting interface with variable interface parameter 5

We first consider the case of a weakly conducting interface (2). Without loss of generality, we assume
that the interface parameter f(0) is at least piecewise continuous and integrable in an interval [0, 27] so that
one can write

B(0) = %Bo + f: ([3; cosnl + B sin n@) > 0. 9)
n=1

Let us first consider that a uniform intensity is applied in the x; direction. For isotropic phases, the
temperature field fulfills the Laplace equation (1). Thus, the potential inside the cylinder is given by
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Ty(r,0) = Ao+ > _ r"(4, cosn0 + B, sin nf), (10)
1

o0
n=

and the potential outside the cylinder by

Ti(r,0) = Co + Z [F"(C,cosnb + D, sinnb) + " (E, cos n + F, sin n0)]. (11)
n=1

The remote boundary condition readily implies that Co =0, F, =0, E; = —H, and E, =0 for n # 1. In
addition, the continuity of the normal component of heat flux provides that

C, = —d*(kd, + H,), C,=—a"kA,, n=273,...,
D, = —d”kB,, n=12,..., (12)

where k = ky/k;. To satisfy the second equality of Eq. (2), namely

—ky z:na”’l (4, cos n0 + B, sin n@)] = B(0)

n=1

Ay +2Hjacos 0 + Za"(l +k)(4, cosn0 + B, sinn0) |,

n=1

(13)
we need further derivations. The right-hand side of Eq. (13) involves a product of two infinite trigonometric
series. To proceed, we employ the known identity of products of Fourier series (Tolstov, 1976, pp. 124—
125). Particularly, given two periodic functions A(6) and $(6) defined on the interval [0, 2x], suppose the
product of these two functions is defined by a new function y(0)(= A(6)$(6)). Then, the Fourier coefficients
of 4, B and y are connected by Egs. (6.3) and (6.4) of Tolstov (1976).

For convenience, we rewrite the results as a set of infinite equations

Bo/2 ()" (0" | (Ao 70
b’ Bﬁ C[; a =< 2r , ( 1 4)
b’ - C/? Bﬁ a” or"

where
(@) = [;Jl,z;,...,x'N,...}, (a")' = [xlﬂsz]
(bl)lz|:ﬁ,]7ﬁ/27'"7ﬁ;\77"'j|7 (b”)t:|:ﬁl1/7ﬁ12/7"'7ﬁ5</7"':|7 (15)
(r/>t: [V’la'ylza"'7y;\/1"'j|7 (r//)t: [y/ll7y/2l)"'7y;<]"":|7

superscript t being the matrix transpose, and

_ﬁo+ﬂ,z ﬂi"‘ﬁg ﬂ,2+ﬁit ﬁ;v—l+ﬂ;\’+l
Bo+By Bi+Bs - Byt By

Bo + Bs

sym Bo + By
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1 ﬁlzl /" ﬁ/ll —"7/ ﬁZ ﬁ% + ﬁ% ﬂ;\:Fl + ﬁé\:Hl
ﬁz - /51 ﬁ4 ﬁl + ﬁs U ﬁN—Z + ﬁN+2
Bi— P Bs — B Be :
Cs = . . (17)
ﬁ;(/-%—l - Bﬁxl/—l ﬁﬁlm - ﬁ;\/f—Z ﬁx/+3 - ﬂxf—3 ﬁl2/N

It is seen that the matrix By is diagonally symmetric, whereas the matrix Cg is not. The identity in Eq. (14)
could be of use in some applications. For example, the reciprocal of any trigonometric series can be easily
resolved by letting y, = 2, ¥ =r” = 0. We have checked for a few particular examples using MAPLE V.

Back to Eq. (13), one may set iy = 24, 4, = (1 +k)d,a" for n > 1 and X, = (1 + k)B,a" for n > 1. In
addition, we identify y/ with —nk,a""'4,, and y” with —nkya"~'B, for n > 1 and y, = 0. It then follows that

ki, ke,
/:__A ! l/:__A " l
r 5g r 5, A (18)
where
A =diag[l,2,3,...,N,...], (19)

and k;, is the harmonic mean of phase conductivities given by

11\
ky = 2 Tt ) (20)

Note that the interface condition (13) (right-hand side) is now transformed into a linear set of equations
with an infinite number of unknowns 4, and B,. Upon rearrangements of the unknown and known
quantities, we obtain a linear system for the unknown quantities 4, and B, as

Bo/2 (B (b")' 240 By
b, B’[; + éA Cﬁ X = —2H1a p 5 (21)
b’ —Cﬁ B/; + EA y q

where & = ky,/a and

—|—k)[A1a, Azaz,..., A,,a”,...],
+k)[Bia, Bxd®,..., B,d",...], (22)

(Bo+82)- (B4 B) s (B + B )]s
q= | =B (B =B (Brci = Bl )]

System (22) can be solved by truncation in any desired order. We remark that as long as f$(6) is not
uniform, system (21) will involve an infinite number of unknowns to be determined. The entire fields can
now be resolved.

Exactly the same steps can be performed when a uniform intensity is applied in the x, direction, namely
T(x,y)|, . = —Hx,. For convenience, we denote the unknowns by the same variables with a superscript
1 . The governing system is very similar to Eq. (21), with only a change on the right-hand side

1
1

Xt
yt
pt

(
(
[
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Bo/2 () (b")' 24y B
b B/} + EA Cﬁ x+ = —2H>a —-q ;- (23)
b’ —Cy;  By+iA| (¥ p

3.2. Highly conducting interface with variable interface parameter o

We consider the same boundary-value problem as in the previous subsection, but with a highly con-
ducting interface. The interface parameter « allows to be a variable around the circular boundary

1 o0
a(0) = 5% + Z (o, cos nl + o sinnd) > 0. (24)

n=1

The potential inside and outside the cylinder will take the same form as in Egs. (10) and (11). The remote
boundary condition in the x; direction implies that Co =0, F, =0, E; = —H; and E, = 0 for n # 1, and the
continuity of the temperature at » = a provides

C, = (4, + H)d, C,=A,a® for n=273,..., D, =B,a* for n=1,2,... (25)
Applying Egs. (24), (25), and (10) into Eq. (4b), we obtain the condition on the interface boundary r = a:

2k {2H1 cos O + Zn(k +1)a"'[4, cos nf + B, sin n@]}

n=1

Za” *{4,0,[(mn — n*) cos (m — n)0

n=1

Ma

:—OCOZI’ZZ "2(4, cosn + B, sin n0) +

3
I

— (mn+n*) cos (m +n)0] } + a" {40l [(mn — n*) sin (m — n)0

hgE
NgE

3
Il
3
Il

1

NgE
NgE

— (mn+n*)sin (m+ n)0] } + a"*{B,o,[( — mn+ n’) sin (m — n)0

3
Il
-
3
Il

NgE
NgE

— (mn +n*)sin (m+ n)0] } + a"*{B,o, [(mn — n*) cos (m — n)0

+ (mn+ n*) cos (m +n)6] }. (26)

m

T
=
I

To proceed, we multiply Eq. (26) by cos 0 and sin 0, and integrate from 0 to 2r. Using the orthogonality
relations of the trigonometric series, after some manipulations, we find

o0 oo
(o — o) s+ 3 A (e, — o, ) + BB + > B (o, — )

n=2 n=2

= 2k [2H, + (k + 1)4,], (27)

dhAia "t + ZA,,na”_2 (o oy + 1) — (o0 +05)Bra™' — ZB,,na”‘2 (o) 4 0l_)) =2k (k+1)B,

n=2 n=2

(28)

In a similar manner, multiplying Eq. (26) by cos p0 and sin p0, p > 2, and integrating from 0 to 2=, will
give
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p—1

2k (k + 1)pa"'4, = ZA,,na”’zp(oc;’+,7 —o )+ Apia’ T (o, — o) Z Aund" = p(o, — o, )
n=1 n=p+1
+ D Band (o, o) + Bypta o, 4 Y B Cp(o, — o), (29)
— n=p+1
p—1
2k (k + 1)pa”'B, = ZAnna”’zp(oc;H — o)+ Aol + Z Auna"p(og,,, + o)
n=1 n=p+1

.
- E:B,,na”’2 (o, +o, ) —Byp 2aP z(xzp Z B,na"p %y T, ) (30)
n=1

n=p+1

Note that, by the definition of Eq. (22), Egs. (27-30) can be expanded as a set of infinite equations with
unknowns x, and y,. In particular, the system can be written in the matrix form as

H‘éi —CB;J_“”[AO1 AO‘HH XH;}ZSWHI{E} (31)

where i = ak,, (h)' =[1,0,0,...], and k, = (k; + k»)/2 denotes the arithmetic mean of phase conductivi-
ties. The matrices B, and C, are defined as in Egs. (16) and (17) with the elements now being replaced by the
Fourier coeflicients of a(0), and the matrix A, is diagonally symmetric defined as

r A/ / / / / / / 7
Oy — O O3 =0 Oty =0y Ay1 = Xyog
! ! ! / !
% — % Oy — 04 BRI VAT, Bl VA
! ! /
s — % T Oy T v
A, = (32)
/ ]
Ssym Y |
]
O(ZN — Oo

To solve the system, again one may truncate the fields by any desired order N. We note that even if «(0)
is only a finite Fourier cosine series with order N, namely, oy, = oy,o = ... = 0, then system (31) still
involves an infinite number of unknowns. However, in this case all the nonzero elements of A,, B,, C, are
confined within a band with bandwidth 2N — 1.

Suppose now a uniform intensity H, is prescribed at the remote boundary, the solution can be derived in
a similar manner, and system (31) is now changed to

Hé —CI%a]_4"[t/)\_] ?\1}}{[3 ﬂ{)yﬁ}—g’?“HZ{g}- (33)

4. Some examples of (60) and «(6)

We examine a few specific examples of f(0) and «(0). First, it is noted that the coefficient 3, in Eq. (9)
should always be positive; §, = 0 occurs only when the interface parameter vanishes throughout the whole
interface. This is simply due to the fact that f,/2 is exactly the mean value of () around the circular
interface. The same reasoning also applies to o.
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Let us now first consider that the interface parameter f8 is a pure cosine series. In this case, b” = 0 and
C; = 0. Thus, it is evident that y = 0, which means that the coefficients B,s are all zero. Particularly, for a
finite cosine series, say B(0) = B,/2 + B cos 0, the system of Eq. (21) becomes

[ Bo/2

By

0

- o /
Po+& fi 0 Ara(l+k) 3
sym By + né A,a"(1 + k) 0

It is seen that the left-hand side of Eq. (34) is a symmetric “tridiagonal” matrix. In general, for a finite
cosine series of N terms, the left-hand side of Eq. (34) is a symmetric matrix with bandwidth N + 1. The
term bandwidth means that all nonzero coefficients of the matrix appear in a banded area surrounding the
main diagonal terms. For the case of constant parameter, i.e. f = f,/2, the matrix B; reduces to a diagonal
matrix

Bﬁ:dlag[ﬁ0+‘fa ﬁO+2éaaﬁO+N§7]7 (35)

and the matrices b’, b”, p” and Cj vanish identically and ()" = [B,,0,0,...]. In this case, system (21) can be
exactly resolved as
B 2Hap,

afo(l + k) + 2k’
We have verified that the field solutions of the boundary-value problem recover the known results for a

constant interface parameter (Benveniste, 1987a).
On the other hand, if all B =0, n # 0, then system (21) becomes

Ay = A, =0 for n#1, B,=0. (36)

Bo/2 0 (b")'] (249 0
b// _C/j é/\ y pl/

which indicates that the coefficients 4, 4, and B, are in general nonzero.

For a highly conducting interface, we first consider that the interfacial parameter « is a cosine series. In
this case, the matrix C, = 0 and thus y = 0, which means that the coefficients B,s are all zero. Particularly,
for a finite cosine series, say o(0) = op/2 + o} cos 0, system (31) becomes

_050—47] OC/I 0/ Ala(l—|—k)
% —2n o 0 Ard>(1 + k)2 1
/ . 0
oy : = —8nHaq ¢ - (38)
sym oo — 4n/n Aya"(1+k)/n .

For the case of a constant parameter, i.e. & = a/2, the above system can be resolved analytically and the
only nonvanishing constant is recovered:
—4k1aH

= 39
! oy + 2(k1 + kz)a ( )
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Suppose now if «/, = 0, then system (31) reduces to

—oipl — 4npA~"! C! Ax | _ h
c. ol it | Ly | =819t g} (40)

where I is an identity matrix.

For a numerical illustration, we consider the two sets of parameters k = 1,k, =2, a=1,
p(0) = 3/2 + cos 6 + sin 6 for a weakly conducting interface and k] =1, k, =1/2, a=1, «(0) =1/(3/2+
cos 0 + sin 0) for a highly conducting interface. For convenience, the corresponding solutions of the latter
problem will be distinguished by a superscript prime. Evidently, the interface parameter $(0), and also «(0),
are always positive for all 0. Thus, the nonvanishing coefficients of B(0) are f, = 3,8, = 1, ] = 1. Setting
Yo =2, v, =77 =0in (14), we find that for selecting N = 15 the numerical solutions for o/ and o/ converge
to a sufficient accuracy. The Fourier coefficients of «(0) are calculated from Eq. (14) as

Odtn =4x (7 %)nv a:tnﬂ =-2x (7 i)”v “:ln+2 =0, aitn+3 = (7 i)na
OCZn-H = _2 X ( - %)n’ aZn+2 = 2 X (_ 41&)”’ O‘Z}H—S = _1 X (_ Alt>n’ ocil/r1+4 = 07 (41)
where n =0, 1,2,... which have been verified with direct expansions of the known formulae
1 [ cosnb) 1 [ sin n0
== —do, == —doé. 42
% n/o 3/2 +cos0+sin0 % n/o 3/2+cos 0+ sin0 (42)

For a prescribed unit uniform intensity in the x; direction, the converged solutions for the weakly
conducting interface are

24y = —0.67658,  x; = —1.1559,  x, =—0.12536,  x3=—9.4186x 1073,

x4 = 6.8896 x 1073, xs = —1.2086 x 1073, x¢ = 8.8964 x 107,

x7 = 3.7047 x 107°, xg = —1.6266 x 107°, xo = 1.8186 x 1077,

x10 = —8.8808 x 107, (43)

y = 0.17081, ¥ = —0.18897, y3 = 4.6541 x 1072, ys = —4.5704 x 107,

ys = —2.4458 x 1074, Ve = 1.3411 x 107, y7 = —1.8306 x 107,

ys = 1.079 x 107, Yo = 3.6803 x 1078, o = —1.3387 x 1075, (44)

On the other hand, for a unit intensity applied in the x, direction, the solution for system (23) simply

follows:

Aé = Ao, xzt1+1 = Yan+1, xiﬁz = —Xdny2, x:t;+3 = —Van+3, xin+4 = Xan+4,

yzﬁprl = X4n+1, y4Ln+2 = Yan42, J’4L,,+3 = —X4n+3, yzt1+4 = —Vani4, (45)
for n=1,2,... We remark that this recurrence relation (45) is indeed a consequence resulting from the
symmetry of the considered function f(6).

For the case with highly conducting interface, remarkably, the solutions for Eq. (31) are linked by those
of the weakly conducting case by

1 1 L

X = ylv y/ =—-X, X" =-Yy, Yy =X (46)

Relation (46) agrees with the exact dual relations of two-dimensional composites with imperfect inter-
faces (Benveniste and Miloh, 1999).
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5. Effective conductivity

Consider a two-phase composite medium consisting of equal-sized circular isotropic cylinder (with
conductivity k) of radius ¢ randomly dispersed in a homogeneous isotropic matrix of conductivity £;.

Homogeneous conditions of the temperature 7(S) = —H'x; are prescribed on the boundary of the repre-
sentative volume element. The effective conductivities &;; are defined as
(9:) = kiy(Hj), (47)

where the bracket ( ) denotes the volume average over V.
For the -type interface, the effective conductivity tensor k[j-* can be expressed as (Benveniste and Miloh,
1986)

KEH? = HY + ex(ky — k) (H) — ky % (T — T)n, dS, (48)
2

r

where ¢, = V5/V is the volume fraction of phase 2 and (H,@)) denotes the average intensity H,-(2> of phase 2.

For the a-type interface, it was shown that the effective conductivity tensor k7" can be written as (Miloh and
Benveniste, 1999)

(&)

KEHY =k HY + cy(ky — k) (H?) — v;
2

/(qj(»z)nj — qj(-l)nj)x,- ds. (49)
r

To provide an estimate for the effective conductivities (48) and (49) of the composite, we first consider a
dilute approximation, which gives a reasonably accurate estimate for a small volume fraction of the in-
clusions (Christensen, 1979). In this method, the inclusions are far apart that all interactions between
inclusions can be neglected. The averaged field quantities are then obtained by considering a solitary
cylinder in an unbounded matrix and subjecting it at infinity to the homogeneous boundary conditions
T(S) = —H'x;.

For the case of the f-type interface, from the solution of Section 3.1, it is readily seen that

-1
(H?) = A /V 0Ty /ox AV = —A, (50)

and, likewise

(H?) = —B,. (51)
Also,

1

7 (Tz—T1)l/l1dS:(]{—i—1)1‘11—|—2[‘117

2 Jr

1

2 Jr

Upon substituting Egs. (50)—(52) into Eq. (48), we find

k{ir = k1 — Cz(kz —kl)Al/Hl — Czkl [(k+ I)Al/Hl +2} = (1 — 202)/(1 — 2C2k2A1/H1, (53)
kgr = — Cz(kz —kl)Bl/Hl — Czkl(k+ I)Bl/Hl = —2C2szl/H1.

To find kﬁ* and kf;, we apply a uniform intensity field /> in the x, direction. Analogous to Eq. (53), the
effective properties follow:
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kf; = — Cz(kz — kl)AlL/Hz — C2k1 (k + 1)A1L/H2 = —202](2/1%/1‘[17

! (54)
kgz = kl — Cg(kz — kl)Bf‘/Hz — C2k1 [(k + 1)B#/H2 + 2} = (1 — 202)k1 — 2C2szf'/H2.

It is noted that the overall properties solely depend on two coefficients 4, and B;. As seen from Egs. (53)
and (54), when kfl* #+ kf; , the overall behavior of the composite becomes anisotropic. This phenomenon is
due to the presence of a variable interface parameter. We mention that for the case of constant f§ (= f3,/2),
the effective conductivities of the composite is macroscopically isotropic. We have verified that this ex-
pression coincides with the previous known results.

For the case of the a-type interface, in analogy to Egs. (50) and (51), we obtain

(HY) = -4, (HY)=-B,, (55)
and

1

7 (¢Pn; — ¢Vm)xi dS = — ky [(k+ )4, + 28],
r

1

72 (q_g«z)nj — qj(»l)nj)xz dsS = — Kk (k + I)Bll (56)
r

Upon substituting Egs. (55) and (56) into Eq. (36), surprisingly, the effective conductivities k{; and 3}

take the same forms as the right-hand side of Eq. (53)

kﬁ( = k] — Cz(kz — k])All/Hl + Czkl [(k —+ 1)A/1/H1 + 2} = (1 —+ 262)](1 + 2C2k114/1/1‘[17

k;f = — Cz(kz — kl)B/l/Hl + Czkl(k + I)B/I/Hl = 2C2le/1/H1. (57)

Similarly, k{5 and k}; take the forms

kly; = 2Czk]A1l//H2,

k;; = (1 + 2C2)k1 + 2C2lelﬂ/H2. (58)
For a constant o, our result can be exactly resolved which again recovers the previously known results
(Miloh and Benveniste, 1999, Eq. (3.45)).

The estimate of the dilute approximation is only valid for a small volume concentration of the inclusions.
To assess the effective conductivities when the concentration is nondilute, we employ the Mori-Tanaka
mean field approach (Benveniste, 1987b). The framework of this model can be easily implemented by a
slight modification from that of the dilute approximation. The formulation of the effective conductivities of
a composite consisting of equal-size inclusions with weakly or highly conducting interfaces can be referred
to the works of Benveniste (1987a) and Miloh and Benveniste (1999). For the present case, the effective
conductivities can be written as

Ko = kI + (ks — k)T (e I+ T+ ) — ek I (eI + T + ¢ ),
K2 = kil + ¢ (ky — kn)M(e I+ M) — eN(e) T+ ;M) (59)

where the matrices T, J, M and N are defined as

__{A1/H1 Af/H2:| _l:(1+k)A1/Hl+2 (1+k)4{/H, :|
B\/H, Bi/H,| (1+k)B/H,  (1+k)B/H,+2]
AV /H,  A{/H, (1 4+ k)4, /H, +2 (1 + k)4 /H,
By/H, B{'/H)| (1+k)B,/H, (1 +k)B{/H,+2

(60)

= —Ki
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Table 1

Effective conductivities versus the volume fraction
C k;ﬂ/kl k;ﬁ/kl
0 1.00000 1.00000
0.1 0.93362 0.97716
0.2 0.87151 0.95483
0.3 0.81326 0.93300
0.4 0.75854 0.91166
0.5 0.70702 0.89078
0.6 0.65841 0.87035

in which the coefficients 4;, By, A;, B are the solutions of the auxiliary boundary-value problem (21) and
(23), while the constants A}, B, A{',Bi’ are found from Egs. (31) and (33).

For a numerical illustration, we employ the two sets of parameters as in Section 4 to estimate the ef-
fective conductivity matrix. The effective conductivity matrix becomes anisotropic and its principal axes are
along the directions of x; = (1/v/2,1/v2) and x» = (—=1/v/2,1/v/2). The conductivities in the principal
directions are listed in Table 1.

Interestingly, we observed from our calculations that the principal effective conductivity of the con-
sidered system are connected by

kp =1/l ke =1/KL. (61)

For perfect bonding interfaces, this relation recovers the results of (Milton (1997)). In Section 6, we shall
prove that connection (61) is indeed a general property for the effective conductivity tensor of the com-
posite, without any regard to the detailed microgeometry, with variable interface parameters. Further, we
showed that the field solutions of the boundary-value problem in Section 3 fulfill the reciprocal relations

B\ /H, = A} /H,. (62)

This implies that the dilute estimate of the effective conductivity tensor is always symmetric. To examine
whether or not the Mori-Tanaka estimate does provide a diagonally symmetric conductivity tensor, we
restrict our attention to the considered system, namely a composite reinforced with circular inclusions with
variable o or . To start with, connection (62) implies that the matrices T and M in Eq. (60) are symmetric.
From Eq. (60), we find that

J=21-(1+KT, N=/k(—-21+ (1 +kM), (63)

which suggests that J, N, JT~', NM ! and their inverse are all diagonally symmetric. Now, the Mori—
Tanaka estimate of the effective conductivity tensor (74) can be recast as

kﬁT = kll + Cz(kz - kl)(ClT71 + CQI + CzJTil)il — 02k1 (Cp]il + C'zTJil + 021)717
Ko =kl + ek — k) (M + o) — e (N +6MN) (64)

Since each term in Eq. (64) is diagonally symmetric, ki;, and k%, are diagonally symmetric.

6. Microstructure independent relations

In this section, we present two microstructure independent properties regarding the composite system
with variable interface parameters. The first one is on the diagonal symmetry of the effective conductivity
tensor. The proof is achieved by extending first the well-known reciprocal theorem to the case of imperfect
interfaces.
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Proposition 1. Consider the conduction problem of a composite body (2D or 3D) V (its outer boundary surface
by S), in which the interfaces between the phases are of either weakly or highly conducting type Egs. (2) and
(4) characterized by an interface parameter that may not be constant along the interface. Let there be two
states of equilibrium. One is given by

T7 qi; I{l
and the other by

T, q, H.

It can be shown that the reciprocal relation holds

/Sq;ndeS: /Sq,n,»T’dS. (65)

Proof. Without loss of generality, it suffices to consider that the composite consists of two phases; each of
the phase occupies region V; (V = V; + V5), that are separated by an interface I'. We first consider that the
imperfect interface is of weakly conducting type. Using the divergence theorem together with Eq. (2) and
ki; = kj;, the left-hand side of Eq. (65) is recast as

_/qindes=/q}’Hi‘dV+/ q?’lﬂde‘L/q}’nf(Tz—Tl)dS
s " &) r
= [quravs [ quzars [ pa-n)m - s
i ¥ r

:/q}Hil/dV—&-/ qf[—]iz’dV—i—/q}n,-(Tz'—Tl’)dS:—/q,«n,-T'dS. (66)
" 2] r N

We thus prove that the reciprocal relation (65) is valid for a composite medium with a weakly conducting
interface.

For the case of an interface with highly conducting type, one may proceed with the proof in the fol-
lowing steps, using the relation of Eq. (4a,b) and also k; = kj:

—/q;ndeS:/q}’HildV—&—/ q?’Hde—i—/Tl (¢ —q))ds
s " ” r
= [qmrav+ [ grrav+ [ 1w, @oon)as
" 2] r

:/q}H}’dV+/ q?Hl.z’dV+/T{ Vs ( vsTl)dS:—/qin,-T'dS. (67)
" 2] r N

In proving the third equality of Eq. (67), we have employed the integral theorems of surface operators
(Van Bladel, 1964, pp. 502-503). Thus, we have proved that Proposition 1 is valid for a solid with variably
weakly or highly conducting interfaces. [

We remark that, although the reciprocal relation is well known for a solid with perfect interfaces in the
contexts of elasticity and conductivity, to the author’s knowledge, it has not been hitherto established in the
case of imperfect interfaces of both kinds in conductivity problems. Proposition 1 allows us to show that for
any variable interface parameter, the effective conductivity tensor is diagonally symmetric. To do this, let us
consider the two fields in Proposition 2 be, respectively, subjected to the boundary conditions

T(S) = —Hix, T'(S) = —Hsy. (68)
The left-hand side of Eq. (65) can be rewritten as
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—/q;.n,-TdS: /q:.n,-Hlde:Hl/q’ldV:HlkszéV. (69)
s s v
On the other hand, the right-hand side of Eq. (65) can be recast as
—/q,-n,-T'dS = /q,-n,-HZ/de :HZ//quV = Hyk; Hy V. (70)
s s v

Since the reciprocal theorem is valid for both types of interfaces, one readily proves that the effective
conductivity tensor is always symmetric, i.e. k% = k% and k/; = kJr. Similar steps can show that k% = k%,
Ky = kP and k% = k%, ks = k!5, We have now proven that the effective conductivity tensor with variable
interface conditions is always diagonally symmetric.

Next, we prove a dual relation between the effective conductivity tensor of composites with variable
interface parameters.

Proposition 2. Consider a two-dimensional heterogeneous medium with variably imperfect interfaces. We will
show that the effective conductivity matrices fulfill the connection

I 1 I 1
*f I T i *0
k (klkaa"'aknaﬁ(S))_k <k13k27"'7kn7ﬁ(s))/detk (71)

and that the effective conductivity of the composite in the principal directions, designated by 1' and 2', follows
the dual relations

1 1 1 1
==, | = VK (R ks, 72
2<k17kza ’k,,’ﬁ(s)) /1(17 29 ) aﬁ(s))a ( )
1 1 1 1
L — —— ) =1/kF ek, .
k] (klak27 aknaﬁ(s)> /k2 (kl7k2a 7k ﬁ(s)) (73)

These results (61)—(73) also generalize the recent results of Lipton (1997) for composites with constant
interface parameter to the systems with variable interface parameter. The proof of Proposition 2 is analo-
gous to the spirit of the aforementioned works, and is thus only briefly outlined.

Proof. Following the concept of Milton (1997) for a two-dimensional composite medium with perfect
interfaces, we define the dual fields (designated by a prime) ¢’ = RH and H' = Rq, where R is a rotation
matrix for a 90° rotation about the x; axis so that the dual field q' is divergence free and H' is curl free. It
then follows that

q, = k,(X1,xZ)H/, k,(X1,xZ) = k(xl,xz)/det[k(xl,xz)]. (74a,b)

The boundary condition can be transformed into
—=-H-s=-R'¢-s=—q -n, (75)

where n is the outward normal to the boundary and s = —Rn is the unit tangent vector along S. Thus a
uniform intensity boundary condition in a given direction i is equivalent to a flux-type boundary condition
perpendicular to i. The interface condition of a weakly conducting type (2) can be recast as
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%% = 4(nh-T1)
. @mFLrid@n = (H-H)s
= RH-n)Z{+ 4RH 1) = R(q—gq)-s (76)
- (H-s)pF—jEMHs) = (¢ —g;)-n
. U~ (g —q)en

Thus, if one lets a(s) = 1/f(s), then Eq. (76) is exactly the highly conducting interface condition. We
thus show that the fields of a composite medium with weakly conducting interface can be transformed into
a dual medium with highly conducting interface in which the phase properties are given in Eq. (74a,b) and
vice versa. By taking averages of Eq. (74b), it provides

1 ,
kK (ki ks, ... Ky, B(s)) = k™ (k’l,k/l,...,k;,m)/detk“. (77)

Note that if k; = k1, Eq. (77) exactly reduces to Eq. (71). Further, since det k™ is a scalar, it suggests that
k™ and k™ possess the same principal directions. Let us write the principal conductivities of k** and k*” as

kK = diag[ki? k7], Kk = diag [k;‘,ﬁ ,k;ﬂ. (78)

Using the identity detk™ = &} x k37, one can readily prove Egs. (72) and (73). O

7. Closure

We have constructed a simple solution procedure for the considered boundary-value problem. Particu-
larly, the solutions are governed by a linear set of infinite equations which can be readily resolved by an
appropriate truncation. The governing matrix is primarily composed of elements which are simple combi-
nations of the Fourier expansion coefficients of the interfacial parameter. We mention that for a different
variation of f§ or a, the formulation remains unchanged simply by changing the Fourier coefficients of o or f3.
Although it may not be likely that the variations of the interface parameters could be actually measured or
known a priori, the solutions may still provide useful information. For example, one may assess the influence
of the variations of f§ or « on the degree of anisotropy of the effective medium. It appears also likely that in
certain situations the introduction of a variable interface parameter around the inclusion-matrix interface
may result in a fact that the matrix fields remain undisturbed upon the introduction of inclusion. The in-
clusion of this kind was referred to as “neutral inhomogeneity”. Relevant studies have been explored in
many different contexts (Mansfield, 1953; Benveniste and Miloh, 1999). We finally remark that the key
feature of the formulation is governed by the fact that the admissible temperature field of a circle can be
represented in a form akin to a Fourier series. Thus, by expanding the interface parameter by a trigonometric
series, one may employ the orthogonality property to resolve the problem. The same thought can also be
applied to an analogous problem for a spherical inclusion with variable interfacial parameter. In the latter
case, the solutions are capable of being expressed in terms of expansions of spherical harmonics, in which an
orthogonality relation is known to exist. Detailed results will be reported in a future publication.
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